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This paper analyses the mass transport velocity in a two-layer system induced by the 
action of progressive waves. First the movement inside the two layers is obtained. 
Next the mass transport of spatially decaying waves is calculated by solving the 
momentum and mass conservation equations in the Lagrangian coordinate system. 
Two different physical situations are analysed: the first is waves in a closed channel 
and the second is waves in an unbounded domain, where the steady-state mass flux 
may be non-zero. The influence of the viscous properties of the lower layer on 
the mass transport in both layers is studied. Comparison with the experiments of 
Sakakiyama & Bijker (1989) in a water-mud system shows good agreement. The 
results show that the mass transport velocity can be quite different from the velocity 
given by the rigid bed theory, depending on the physical properties of the lower layer. 

1. Introduction 
Mass transport is a steady Lagrangian current generated by wave motion. This 

steady flow, although small in magnitude, is important in determining the migration 
of sediment near the sea bed and of pollutant in a water column. 

The physics of the generation of mass transport under a two-dimensional wave 
field is fairly well understood. If it happens that the horizontal and vertical velocity 
components oscillate with a phase difference other than n/2,  so that the time average 
of their product is non-zero, there will be a net transfer of x-momentum across a sur- 
face element with normal in the z-direction. As a result of the increase of the velocity 
with distance from the boundary, this effective stress will vary across the bound- 
ary layer and it will thus produce a non-zero average force on the fluid (Batchelor 
1967). Moreover, the residual vorticity generated inside the viscous boundary layers 
is diffused into the water column in the core region and also advected by the mean 
velocity. 

Mei (1989) has shown that in the unusual situation where the wave amplitude Hs 
is much smaller than the Stokes boundary layer thickness ( 2 ~ / a ) ” ~ ,  where v is the 
kinematic viscosity and a the wave frequency, diffusion dominates and convection is 
negligible. Hence the problem is linearized and the analytical conduction solution of 
Longuet-Higgins (1953) is obtained. In more practical situations, the wave amplitude 
is greater than the boundary layer thickness and so both convection and diffusion 
are important. As was stated by Iskandarani & Liu (1991), in this case numerical 
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solutions are usually required. However, as will be shown later, an alternative to 
taking into account both convection and diffusion in an analytical approach is to 
employ Lagrangian coordinates. 

Migniot (1968) first analysed experimentally the interface mass transport velocity 
induced by wave action on a two-layer system (water and mud). Dore (1970), studied 
this problem theoretically and concluded that the interface mass transport velocity 
can formally be an order of magnitude larger than that obtained by Longuet-Higgins 
(1953) for a single homogeneous fluid. In addition, he found that the profile of the 
mass transport velocity in either fluid was independent of the wavelength. 

Tsuruya, Nakano & Takahama (1987) and Shibayama, Takikawa & Horikawa 
(1986) applied the solution of Dalrymple & Liu (1978) to study mass transport in a 
two-layer system, but these authors did not consider the Stokes drift investigated by 
Longuet-Higgins (1953) and so the mechanism of the mass transport was not fully 
described. Sakakiyama & Bijker (1989) have obtained the mass transport velocity 
inside the lower layer (mud layer) also by using the theory of Dalrymple & Liu 
(1978) for the first-order solution, but in that paper the second-order time-averaged 
horizontal pressure gradient was neglected, which precludes the existence of any 
second-order set-up. All the above theories were based on the Eulerian coordinate 
system. 

Swan & Sleath (1990) pointed out that in order to obtain a solution for the flow 
in the boundary layer, it is desirable to adopt curvilinear coordinates, since as was 
shown by Longuet-Higgins, the use of Cartesian coordinates coupled with a Taylor 
expansion about the mean level produces a solution that is valid only for waves 
of extremely small amplitude. For water wave studies, the alternative to using the 
Lagrangian description has been explored by Pierson (1962), Chang (1969), Unliiata 
& Mei (1970) and Huang (1970). More recently, Grimshaw (1981) has studied 
mass transport using the generalized Lagrangian-mean formulation of Andrews & 
McIntyre (1978). 

The aim of this paper is to investigate the mass transport velocity induced by 
the action of decaying progressive waves propagating in a two-layer viscous system. 
Lagrangian coordinates are employed a priori, since it seems more natural in order to 
obtain a Lagrangian velocity. The amplitude of the surface wave is allowed to decay 
spatially along the channel length (x-direction) with an attenuation length scale k ~ l .  

The upper and lower layers are modelled as viscous fluids and the mass transport in 
both layers is determined. 

In 92 we formulate the general equations, and in 53 the equations in the Lagrangian 
coordinate system are derived, which will enable us to take into account both 
convection and diffusion of the mean vorticity from boundaries. The first-order 
solution for both layers is obtained in $4, and in 95 we derive the second-order 
solution. Finally, in $6 we apply the second-order solution to a two layer viscous 
system. We concentrate on two different physical situations: the first is waves in closed 
channels, where it is appropiate to impose a condition of zero net mass flux when 
calculating the mass transport velocity; and the second is waves in an unbounded 
domain, where the steady-state mass flux and the set-up of both the free surface and 
upper-lower layer interface may be non-zero. 

2. Formulation 
Cartesian coordinates ( x , z )  are introduced so that the origin is at the undisturbed 

interface between the two layers, z is positive upwards and the x-coordinate is positive 
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in the direction of wave propagation. Subscripts w and m refer to the upper and 
lower layer. The system is forced by a small-amplitude surface wave of frequency CJ 
propagating in an upper layer of depth hl and density pw and over a denser layer of 
depth h2 and density p m .  

The equation of motion for a viscous incompressible fluid is the Navier-Stokes 
equation : 

p q = - v P + p v 2 q - p g ,  

v-q = 0, 

and the continuity equation: 

where q, P ,  p7 p and g denote respectively the vector fluid particle displacement with 
horizontal and vertical components (x, z),  pressure, dynamic viscosity, fluid density 
and gravitational acceleration, and the overdot means time derivative. 

3. Lagrangian equations 
Lagrangian coordinates specify the velocity of a fluid element while it flows. In 

a sense, using the Lagrangian description is somewhat analogous to the coordinate 
transformation - in which the free surface is made a coordinate curve - used by 
Longuet-Higgins (1953), Dore (1973) and Craik (1982). However, mass transport 
is a Lagrangian quantity, and should then be more directly obtained from the 
corresponding formulation. 

The method of analysis involves an expansion in powers of a small parameter E 

associated with the wave amplitude and the wavelength. To simplify the perturbation 
form of the resulting equations and following Pierson (1962), the tags for the fluid 
particles will be identified by their coordinate (a$) either at zero time or in the 
undisturbed position, and (x, z) are their coordinates at any time t 2 0. The coordinate 
origin being located at the interface between the two layers, the positions of the free 
surface, of the upper-lower layer interface and of the rigid bottom are defined by 
6 = hl, 6 = 0 and 6 = -h2. Figure 1 shows a general sketch, where X ,  defines the 
particle position at zero time, i.e. X ,  = (a,@, and X defines its position at any time 
by the coordinates (x,z). 

In this way X = X(X, ,  t )  and X ,  = X ( X o ,  0),  and the domain of definition is given 
by 

0 d a d +Oo, -h2 d 6 d hl, t 2 0. (3.1) 
If it is assumed that the functions x = x(a, 6, t )  and z = z(a, 6, t )  can be inverted, 

it is possible to express a and 6 in terms of x and z, where a = a(x,z, t)  and 
6 = 6(x,z, t) .  For a given function f ( x , z , t ) ,  we can obtain the components of 
the gradient (af/ax,af/az) in Eulerian coordinates by considering a and 6 as two 
parameters : 

where 

and the subindices a,S mean d/8a  and 8/86. 
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FIGURE 1. General sketch. 

Applying (3.2) to (2.1) and (2.2), the mass conservation equation 

and the x- and z-momentum equations in Lagrangian form are obtained: 

M = -(l/p)(P,zs - Psz,) + V [ Z s ( & Z g  - XgZ& 

i' + g = -(l /p)(Psx,  - Parxg) + V [ Z b ( i , Z b  - i b Z , ) ,  

-z,(%,zg - Isz,)s + xs(%,xs - %&), - X,(X,Xb - igx,)s], 

--Z,(iaZ6 - igz,)g + xg(2,xg - igx , ) ,  - x&xg - i g X , ) g ] .  

(3.4) 

(3.5) 

Equations (3.3), (3.4) and (3.5) should be solved with the proper boundary condi- 
tions. The boundary conditions are prescribed on the free surface 6 = hl,  where the 
stress is zero and the kinematic condition holds, at the interface 6 = 0, where there is 
continuity of velocity and stress, and finally at the rigid bottom 6 = 4 2 ,  where there 
is no motion. 

The stress tensor T is stated as: T = -PI + z, where I is the unit tensor and z is 
related to the symmetric part of the velocity gradient tensor D, being equal to 2 pD. 
The tangential and normal components of the stress are obtained considering the 
tangential and normal vectors to the material curve t = (x,,zcc) and n = (-z,,x,): 

(rzz - Lx)X,ZCt + Zx,(X,2 - z,") 
lIN1I2 

, ( 3 . 6 ~ )  (Tn)t = 

w: + TXXZ,2 - 2zxzxaza - P ( x i  + zf) 
llNl12 

(Tn)n = 9 (3.6b) 

where ((A'(( is the magnitude of the vector normal to the surface. The components 
(rzZ,zw,~,,) o f  the tensor z are 

ai 
az 

ax 

z,, = 2p- = 2p(x,ig - X g i , ) ,  (3 .74  

(3.7b) 
ax 

z, = 2p- = 2p&zg - Xaz,), 
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7x2 = c1 - + - = p(x,is - x g &  + i,zg - Zsz,). (a: ,":> (3.7c) 

Following Pierson, we assume a perturbation about x = a , z = 6 and P = Po -pg6 

(3 .8~)  
(3.8b) 

Note the implicit assumption made in the above perturbation expansion that the 

of the form 

= + #) + (2) (2) + . . . 
P = (Po - pg6)  + e p(l) + d2) $2) + . . * , 

where qo = (a, d), q(') = (~('1, z( ')) ,  q(2) = (d2), z ( ~ ) )  and E is the ordering parameter. 

Lagrangian deformations are small. 

4. First-order solution 
When these perturbations are substituted into the above equations of motion and 

mass conservation, and when terms in the first power of E. are collected, the first-order 
equation is obtained: 

$1) + gzp = - p ,  (1) / p  + v ( k g  + if;), ( 4 . 1 ~ )  

.i!(l) + g z p  = - p y / p  + v ( i g  + ig), (4.lb) 

(4.1~) 

We look for solutions for pressures and displacements of the following complex 

gp' + 2;) = 0. 

form : 

where i = (-1)'l2 and the functions with a circumflex are in general complex. Only 
the real part of this expression should be taken. 

The elevation of the free surface is defined as q = H,/2ei(ka-"*), where H,  is real 
and k is complex, the real part of k is the wavenumber and the complex part kj is the 
damping coefficient of the wave height. 

Substitution of the perturbation series (3.8) into (3.6), and use of (4.2), yield for the 
first-order components of the stress 

[q(1), = [@(a), j (d>l  ei(ka-at), (4.2) 

(Tn)t(') = pvr(if)  + $), 

(Tn)n(') = -(Po - prgd)2xY) - p(') + 2p r r a ,  v i(') 

(4.34 

(4.3c) 
(Tn)n(O) = -(Po - p,gd), (4.3b) 

and substituting into (4.1) and solving for p(')  and x(l), the governing differential 
equation for z(') valid for both layers is obtained: 

z & ) ~ ~  - ~!:)(1:  + k2) + z ( ~ )  1," k2 = 0, (4.4) 

(4.5) 

where 

and the subindices r = {w, m} identify the upper and lower layer. 

2 2  1, = k - in/vr, 

The solution assumed here for the upper layer is 

2, = im,[W1ebcw - W2e-'w6] + i[W3 sinhkc, + W4 cosh kc,], 
2, = Wle'wcw + W2e-lws + W3 cosh kc, + W4 sinh kc,, 

(4 .6~)  
(4.6b) 

where c, = 6-hl and for the lower layer that satisfies the bottom boundary conditions 
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at 6 = -hz: 

2 m  = iM3 [-m, sinh lmc, + sinh kcm] + iM4[- cosh lmc, + cosh kc,], (4.7~) 

where m, = l,/k and Cm = 6 + h2. 

It should be noted that the solutions for the upper and lower layers are slightly 
different. The properties of the upper layer will be considered to be of the same 
order as those of the water, i.e. p, = lo00 Kg mV3 and v, = m2 s-l, and the 
properties of the lower layer will be those of a highly viscous fluid. Following Hunt 
(1964), defining the non-dimensional parameters : 

K =kh, L=l,h, 

the equation (4.5) for the upper layer becomes 

ip: (L2 - K 2 )  = 2 K 2  pz. (4.9) 

In liquids of vanishing viscosity, as p1 + 0, K and p2 assume their inviscid significance 
and remain finite. Consequently from (4.9), as as b;’. Thus the 
presence of terms of the type {coshl,hl,sinhl,hl} indicates a singularity at v, = 0, 
which precludes the use of the same solution for both layers. To tackle this problem 
we consider only exponential terms that vanish far from the boundaries for the upper 
layer. 

Applying the boundary conditions of zero stress and the kinematic condition at the 
free surface 6 = hl, the continuity of velocity and shear stress on the interface 6 = 0 
and using (4.3), the unknown complex constants M3, M4, W, - W4 are obtained: 

+ 0, L -+ 

M4 -[(mi - l)mWR(S1,Ck2 - mmSk2CZ,) - (-m,SZ, + Sk2)LII + m,ClkLz 
mm 

2 M3 = K1mm(mw - ’) - M4L1, 
W2 = K1 + M3(Ck2K2 - C1,) + M4K4, (4.11) 

mmL2 

where constants L1-L4, K1-K4, &I, c k l ,  s k 2 ,  Ck2, Sl,, Cl,, Clk and g’ are listed in the 
Appendix. 

Finally, the complex wavenumber is obtained by applying the condition of conti- 
nuity of normal stress through the water-mud interface: 

(4.13) 

which yields (4.14), where p’ = pw/pm, V’ = Vw/Vm and R = (p’v’)-’, 

p’v’[-2mW Wz + (mi + 1)( W4Ckl - W3Skl)] = M3 [-g’( 1 - p’)Clk 
-2mmS1, + Skz(rn; + l)] + M4[-g’(l - p’)K4 - 2 C 1 m  + Ck;l(m; + l)]. (4.14) 
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5. Second-order solution 
At the second order, the mass conservation equation is 

xp’ + zp’ = -xr)zjl) + xy)zp, 
and the a and 6 momentum equations for a viscous fluid are 
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2(2) + gzf) + p y ’ / p  - V(Z, *(2) + $2) = QZ, 
Qz = -2(1)$) - y(1)$) + v(xy’($g + #)) + z ( l )  5“) + i(’) 

66 6 ( cici 6 6 )  

-2[x9Lg + z(1)p)  6 66 + p)(z(u a6 u + #))I 6 - i ( l ) (x(u a cia + xg)  - gyzg + zj’B)}, (5.3) 

which agree exactly with those obtained by Pierson (1962). 
The second-order stress components to be used in the boundary condition are 

(Tn)t(2) = pv[$’ + ip’ + 3 ( 4 ) $ )  - xci . ( I )  Za (1))  - .$l)x(l) a 6  + $UX(l)] a u )  ( 5 .4~ )  

-2pv(#) + iil))zil) + 4pvx(,‘)i!) + 2p[ij2) + if’x:’) - ~ y ’ i ~ ~ ) ] .  (5.4b) 

With spatial decay, the mean velocity cannot be strictly unidirectional since any 
x- variation in the horizontal velocity must be associated with a non-zero vertical 
velocity. The equations (5.2) and (5.3) can be solved exactly if a stream function is 
defined such that 

(Trip = -(Po - pgij)(zy + $2) - 2p(’)xLl) - p(2) 

ys, i ( 2 )  = W U .  (5.5) #) = - 

(5.6) 

The concept of the stream function in Lagrangian coordinates is essentially the 
same as in Eulerian coordinates. However, it should be noted that mass conservation 
is not fulfilled exactly by tp. This is clear when considering the time derivative of 
equation (5.1), since it is an inhomogeneous equation: 

Introducing equation (5.5) into (5.2) and (5.3), it is readily shown that tp satisfies 

V2 (-9 + vV2 W )  = Qxa - Qza = Q.  

(5.7) ap  + if’ = -(x;)zp)t + (xg (1) z, (1)  ) t ,  

where the subscript t means time derivative. This fact was already observed by Miche 
(1944) in studies of gravity waves by means of the Lagrangian formulation. To tackle 
this problem, Miche evaluated the mass conservation equation to one order higher 
than the solution obtained. As stated by Pierson (1962) as well, the consequences of 
the failure to satisfy the mass conservation exactly are difficult to comment upon since 
most work in hydrodynamics considers this equation as one not to be trifled with. 
Nevertheless, in our case where we are looking for a second-order steady solution, the 
mass conservation is verified exactly for the time-averaged stream function ip, since 
the time average of the right-hand side of equation (5.7) is identically zero. 

The expressions Qx and QZ contain zeroth-order and second-order harmonics. Thus 
we look for second order solutions of the form 

= + p e2i(kn-ot) (5 .8)  
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deriving this equation, we use the results 
To calculate the zeroth harmonic i j j ,  we take the time average of equation (5.6). In 

Re(d)Re(a)  = iRe(&"W) = i R e ( d a * ) ,  

- - -  (&a), = &&a + &at = 0, 

(da)zt = dtta + &at, = 24,t% 
~ - ~ -  

& and 98 being any two complex quantities with angular frequency 0, the asterisk 
denoting a complex conjugate and the bar meaning time average. 

Taking time averages of (5.6), we obtain 

vv2 (V2 i j j )  = Q, (5 .9~)  

(5.9b) 

In equation (5.9) it is assumed that the motion has been established in the entire 
depth (i.e. dip/& = 0). 

It should be noted as well, that in equation (5.9b) the non-viscous terms on the 
right hand side of equation (5.6) cancel each other, otherwise these terms will be 
secular when solving for the upper layer. 

Also, it can be seen that in the present Lagrangian formulation, the convective 
terms that appear in the Eulerian formulation do not appear explicitly since they are 
taken fully into account implicitly in the solution. The resulting equation is exact to 
second order in the parameter e. 

For the two cases analysed in this paper, the spatial - as well as temporal - wave 
attenuation is not necessarily small (see Piedra-Cueva 1993); in fact typical values 
of kj may reach as high as to lo-' m-l, i.e. two orders of magnitude higher 
than the damping coefficient for a rigid bottom. Thus, it is not possible to suppose 
that the boundary conditions for the mass transport in the core region are essentially 
unaltered from those for unattenuated waves, as assumed by Craik (1982). 

In the same way, Craik (1982) pointed out the apparent inconsistency of the 
classical assumtion that dn/dz + 0 outside the bottom boundary layer. In $4, a 
first-order velocity profile is derived which is valid in the entire water depth, i.e. in 
both the boundary layer and in the core region. This profile avoids the need to use a 
matching condition at the outer edge of the boundary layers. In fact, it is necessary 
only to impose the proper boundary conditions at the interfaces and at the rigid 
bottom, which are well known. To second order they are: zero normal and shear 
stresses at the free surface; continuity of velocity and shear stress at the two-layer 
interface; and finally zero velocity at the bottom. 

To calculate the time average of Q, i.e. Q, in (5.9), the first-order displacements 
given by equations (4.6) and (4.7) are written in the following different way: 

Q = 2v [ ~ x ~ ( ~ : s s s  + 2gaa) - ~ ( X S  + za)(ama - 2 6 ~ 6 )  

+3xaa(*m - 266)  + X S S ( ~ ~  + 3 i c ~ ) l -  

jZr=CAn,enrCr,  $ r = C B n v e " r C r ,  n , . = l r , - l r , k , - k ,  (5.10) 
n, n, 

where subindex Y = {w, m} refers to the upper and lower layer respectively, c, = 6-hl 
and c, = 6 + hZ. 

The right-hand side of (5.9) can be stated as 

(5.11~) 
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(2jrn, = 2~{iAj,Bn, [k*k3 - j r$  - i(k2)*(k2 + n;) + i j ; (k2 - 3n:)] 

+AjrAn,(-k*n,3 + jrk3) - ~ j , k * ( i k ~ ~ ,  + ~ S B , ) ) ,  (5.1 1 b) 

which is valid for both layers with the proper selection of subindex I and where 
j r  = n:, A,  = A;,, etc. 

Since the a dependence of Q is concentrated in the term e-2kja, it is valid to assume 
that a steady-state solution @ exists with the form 

8 = 4 t h )  e-2+. (5.12) 

Substituting equations (5.12) into (5.9) and using (5.1 la), the inhomogeneous bi- 
harmonic differential equation for Q, is obtained: 

(5.13) 
jr n, 

where Roman numerals mean derivatives with respect to 6 and a = 2kj.  
The general solution of this inhomogeneous differential equation is 

4 r  = (Ar2 + crBr2) cos acr + (Cr2 + crDr2) sinac, + )7 HhgeCir+nr)cr, (5.14~) 
j ,  nr 

(5.14b) 

6. Waves propagating in a two-layer viscous system 
Some years ago, Dore (1970) carried out a detailed study of the mass transport 

velocities induced by water waves in a two-layer fluid system of finite depth. Such 
a Lagrangian velocity was calculated using an Eulerian coordinate system. In a 
subsequent paper, Dore (1973), he presented an extension and reformulation of his 
previous paper, since the interfacial boundary conditions were satisfied only at the 
equilibrium level, and this is satisfactory only when the perturbation parameter based 
on the wave slope E << Re = (vwk2/a)'/*, Re-' being the representative wave Reynolds 
number. In fact this condition is - as was stated by Dore (1970) - a severe one, so 
that this work can only be regarded as a preliminary analysis. In the second paper, 
Dore (1973) employed the orthogonal curvilinear coordinate formulation of Longuet- 
Higgins (1953) to the case of an interface. Dore (1973) also assumed that both the 
upper and lower fluids were amenable to boundary layer analysis, and therefore, the 
whole fluid region was divided into the boundary layer region and the core region. 
The necessary condition for this situation to be valid was specified by Dore (1973): it 
is that the boundary layer thickness in the oscillatory fluid should be much less than 
both the corresponding fluid depths hl and h2. 

In our case in which we consider the lower layer as a highly viscous fluid mud, 
with a kinematic viscosity v, between lop4 and m2 s-l, the ratio between the 
boundary layer thickness and the fluid depth (2vm/o)/h2 is about 0.14.2, and thus 
the above condition is not completely satisfied. Instead, a fully viscous solution for 
the lower layer should be looked for, as is the solution presented in this paper. 

As stated by Foda, Hunt & Chou (1993), at high strain amplitudes the shear 
modulus of muddy bottoms is negligible, and the sediment behaves as a viscous fluid 
characterized only by a viscosity. In general, this viscosity is a function of the shear 
rate and in this condition the mud may be modelled as a Bingham body, as was 
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done by Sakakiyama & Bijker (1989). Nevertheless in analogy with the viscosity of a 
Newtonian fluid, an apparent viscosity pG can be employed, defined as z = podu/dz, 
which can be determined at a convenient shear rate according to the problem to be 
considered. 

Equation (5.14) is used to describe the mass transport velocity in the two layers. The 
four unknown constants Ar2-Dr2 are obtained by applying the boundary conditions 
corresponding to the physical situation considered. 

6.1. Waves in closed channels 
The four unknown constants of (5.14~) for each layer are obtained by applying the 
boundary conditions of zero tension at the free surface, continuity of velocity and 
stress at the two-layer interface and zero velocity at the rigid bottom. However, if 
the free surface set-up is non-zero, as is the case for waves in closed channels since a 
horizontal hydrostatic pressure gradient is established to balance the radiation stress 
of the progressive wave and thus to produce the inverted flow, a further boundary 
condition should be imposed. The additional condition usually employed is the 
condition of zero net mass flux at each downstream location x. 

Since we are not interested primarily in calculating the free surface set-up and we 
work with the stream function, it is more appropiate to replace the condition of zero 
normal stress by the condition of zero flux, which can be easily stated as @ = 0. 

We start with the boundary conditions at the free surface cw = 0 or 6 = hl. 
(i) Zero flux, fp = 0, 

(ii) Zero shear stress: (Tn)tc2) = 0. 
Taking the time average of (5 .4~)  and using the first-order velocity given by (5.10), 

- -  the condition becomes 

Substituting (5.5) and (5.12) 

and using (5.14) 

p) + ip’ = 0, 

- 4 6 6  + a24 = 0, 

6 

jw nw 

where A ,  = ( j ,  + nr). 
Next we apply the boundary conditions at the bottom c, = 0 or 6 = -h2. 

(iii) Zero vertical velocity is’ = qm = 0, 
- 

- 
(iv) Zero horizontal velocity 2;) = -fpm6 = 0, 

Finally, we apply the boundary conditions at the two-layer interface cw = -hl and 

One condition is the continuity of vertical velocity if) = zc) or fpw = fp,. Under 
- -  C, = h2. 
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the conditions of zero total horizontal flow in each layer, this condition becomes 
i jw = i jm = 0. 

(v) i j r n  = 0, 
Cm2(sin ah2 - ah2 cos ah2) + Dm2h2 sin ah2 = Pml. 

- hl cos ah1 Bw2 + Cw2 sin ah1 = P,1, 

(6.5) 

(6.6) 

(vi) ow = 0, 

where constants Pml, Pwl, P21 and P3 are given in the Appendix. - 
(vii) Continuity of horizontal velocity 2:) = 2 or g w a  = ijm, 

  ah^)^ - sin2 ah2 
h2 sin ah2 

Bw2 (cos ah1 - = P21. 

(viii) Continuity of the shear stress (Tn)d2)1, = (Tn)d2)1,. 
From equation (5.4a), the shear stress at the interface is 

I h l  A (Tn)tc2))r = P r V r [ S r g  + iO, - 2ok X,(X~# + ik2r)], 

or after substitution of (5.10) and (5.12): 

(6.8,) 

?’* = x2ak*A, , (nrAj ,  + ikBjleArcr). (6.8b) 

I 1  P v [-4wss + a24w - .i.,~ = [-4rnss + a 2 4 m  - Frn1, 

j ,  n, 

Noting that at the interface 4, = 4m = 0, substituting (5.14) we obtain 

2a(ah2 - cos ah2 sin aha) 
h2 sin ah2 

- p‘v‘2~ cos ah1 Bw2 - Cm2 = P3. (6-9) 

Solving for Cm2 from (6.7) and (6.9): 

1 -plv’ sin2 ahl 
(a2h: - sin2 ahl)  + (cos ah2 sin ah2 + ah2) 

crn2 [ - sin ahl cos ah1 + ah1 

(6.10) 

Obtaining C,,Q from (6.10), the other unknown constants are determined straight- 

PZl 2ap’v’ sin’ ah1 
- cos ah1 sin ah1 + ah1 [ .  + - h2 sin ah2 

- 
2a 

forwardly by substitution of Cm2 back into (6.4)-(6.7). 

6.2. Waves in an unbounded domain 
In unbounded domains, it is reasonable to assume that both the steady mass flux and 
the set-up are non-zero. For waves propagating in a water layer of constant depth, 
the order of magnitude of the free surface set-up is ca - H:k,/hl. If the bottom is 
modelled as a rigid body, typical values of the wave damping coefficient kj  are of 
the order of rn-l and under such conditions the set-up is negligible. But when 
considering waves propagating over a non-rigid bed, the damping coefficient may be 
two orders of magnitude higher and a set-up should therefore exist to compensate 
the radiation stress flux. 

To solve this case, we start by applying the boundary condition of zero stress at 
the free surface c, = 0: 

(i) zero normal stress: (~n)n(2)  = pf) = 0. 
- 
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impose the following alternative condition : 
Following Kravtchenko & Daubert (1957), to verify this condition it is enough to 

(6.11) 

After averaging in time, the x-momentum equation (5.2) for the water layer becomes 

(6.12) 

Substituting (6.11) into (6.12) and considering that at the free surface i$) = <,, we 

(6.13) 

= O(okH:), <,, = O(kjH,2/hl),  equation (6.13) can be 

~ 

p g i / p w  + g 2  - vwV 2 0 -  kw - Qw,, - c, = 0, 
- 

get 

g twa  - v w v 2 d ?  = Qwx = Q,, + QW", 
where Q,, and Qwv are the non-viscous and viscous parts of Qxw as defined in (5.2). 

rescaled to give the following dimensionless groups : 

- 

Since x(l) = O(H,), 

(6.14) 

Under typical conditions, the order of magnitude of the two dimensionless groups of 
(6.14) is lo3 - 104: thus if they do not vanish they would give secular terms. Vanishing 
of the non-viscous terms means 

-- 
g t w a  = -(X(l)$) + ?W$)), 

and after the time average is taken, the free surface set-up is 

(6.15) 
o2 5 - -kje-2kj"[ll 2, + 1 1  2, 112], C, = 0. 

- 2g 

The remaining two viscous terms of (6.13) give the following relation: 

a246 + 4 6 6 6  = pw3, 

where Qwv = v,e-uljdPw3. Substituting (5.14) for the upper layer ( r  = w ) :  

(6.16) 

- -  
(ii) Zero shear stress : ( 

The boundary conditions (iii) and (iv) at the bottom are the same as (6.3) and (6.4). 

AW2(c0s ah1 + ahl sin ahl) - sin ahlC,2 - Cm2(sin ah2 - ah2 cos ah2) - D,2h2 sin ah2 = PI, 
(6.17) 

where constant PI, P22, P4 and PS are given in the Appendix. 

= xf) + ii2) = 0. 
This condition gives again (6.2). 

(v) At the interface, we start by imposing m-7a i, - zm , which gives 

(vi) Now the continuity of horizontal velocities T - 3  2, - Xm gives 

- A,2a2hl cos ah1 + a cos ah1Cw2 - Cm2a2h2 sin ah2 - Dm2(sin ah2 + ah2 cos ahz) = P22. 
(6.18) 
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(vii) The continuity of shear stress can be stated as 

(R-' - l)a2$m - ~ - ~ 4 ~ a 6  + 4m66  = R- '?~  - Fm, 
where Fr is given by (6.8).  

After susbstituting 4 :  
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Cm2a[-(R-' - 2)a2h2 cos ah2 + R-'a sin ah21 + D,za[(R-' - 2)ah2 sin ah2 
+2acos ah21 - R-'a2[A,2(cosah~ - ah1 sinahl) + sinahlCw2] = P4. (6.19) 

(viii) Continuity of normal stress (Tn)d2)Iw = (Tn)t(*)I,, which can be stated as 

Pw - P m  
As in the case of the free surface, we impose again the condition of continuity 

of pressure. After using the x-momentum equation (6.12) written for the upper and 
lower layers and considering that at the interface z?) = ,#I = t,, we obtain 

0-0. 

- -  

gtrna(1- P') + p'vwv 2 0  kw + P'Qwn + ~ ' Q w v  = vmV 2 0  A m  + Qmn + Qmv, (6.20) 

where again Qm and Qrv are the non-viscous and viscous parts of Qm for both 
layers. Since now = O(Hi), d2) = O(akHf),  tM = O(kjH;/hz), where Hi is 
the interfacial wave amplitude, equation (6.20) can be rescaled as well, to give the 
following dimensionless groups : 

Under typical conditions, the order of magnitude of all the dimensionless groups 
is >> 1, i.e. the viscous terms of the water layer can be neglected. This means that 
to second order the contribution of water viscosity to the pressures is negligible. The 
resulting equation 

gtrnN(1- P') + P'Qwn = vmv 2 0  krn + Qmn + Qmv, (6.22) 

has two unknows: the interfacial set-up and the interfacial velocity, and thus an- 
other equation is needed. The set-up of the two-layer interface can be calculated 
aproximately by using the x-momentum equation integrated on the lower layer. This 
equation can be stated as: 

where U is the depth-averaged second-order velocity (assumed to be time indepen- 
dent), b, = hl + 5 ,  and b, = h2 + em, g b  and Fi are the second-order shear stress 
at the bottom and at the two-layer interface and YpXx: is the x-component of the 
radiation stress tensor, as defined by Longuet-Higgins. 

Since the drift velocity U is of order 2 in the parameter E,  the convective terms are 
of order 4 and can be neglected. Assuming that tw << hl and 4 ,  << h2, the interface 
set-up can be calculated as 

(6.24) 

Since all the terms in equation (6.24) are of second order, it is possible to transform 
to Lagrangian coordinates simply by replacing the x-derivative by the a-derivative. 
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Run pm( Kg mP3) Vm( m2 s-’) Hs( m) 
A3 1380 1.5 x lo-* 0.038 
B1 1300 1 x 0.027 
c 2  1230 4 x 0.032 
D2 1140 1 x 0.032 

TABLE 1. Experimental conditions. 

Introducing (6.24), written in Lagrangian coordinates into (6.22), and using (5.5) 
and (5.12), we obtain 

- 2a3 cos ah2(2 - p’)Cm2 + Dm2 [2a2 sin ah2 2/h2a( 1 - p’)( 1 - cos ah2 + h2a sin ahz)] = Ps.  
(6.25) 

This set of equations allows the calculation of the eight unknown constants of 
equation (5.14). 

6.3. Results 

The results of the present model are compared with the experimental and numerical 
results of Sakakiyama & Bijker (1989). The velocities calculated by the present model 
were obtained for the case of an unbounded domain. The steady-state mass transport 
flow is reached when the flow is established throughout the length of the wave flume. 
This time scale is TL = L/akH: = O(100 min) where L is the flume length. It is 
possible that the mass transport velocity after the 1-3 minutes of the test has not 
been completely established in the wave flume, and so the condition of an unbounded 
domain may be more suited to the experimental conditions. 

The laboratory experiments of Sakakiyama & Bijker (1989) were performed in a 
wave flume 24.5 m long, 0.50 m wide and 0.57 m deep. Water was used for the 
upper layer and a mix of water and mud was used as the lower layer. The initial 
thickness of the mud layer was about 0.09 m and the water depth was fixed at 0.30 m 
in all the experiments. The time period in all tests employed was about 1.0 s and the 
duration time of wave action was about 1-3 minutes. Table 1 shows the experimental 
conditions. 

The velocities are expressed in non-dimensional form by using the mass transport 
velocity at the two-layer interface (u,) calculated numerically by Sakakiyama & Bijker 
(1989) as the normalization velocity. The vertical coordinates are normalized by the 
mud thickness h2 in such a way that 2 = 0 means the rigid bottom and 2 = 1 means 
the two layer interface. 

Figure 2 shows the comparison of the profiles of mass transport velocity in the 
lower layer (mud layer) measured and calculated by Sakakiyama & Bijker (1989) and 
calculated with the present model. It can be seen that in general there is a good 
agreement between the measured velocities and those calculated by the present model. 
For runs B1 (figure 2b), C2 (figure 2c) and D 2  (figure 2 4 ,  the result of the present 
model near the water-mud interface is an improvement on that of Sakakiyama & 
Bijker (1989). For run A3 (figure 2a) , the result of Sakakiyama & Bijker (1989) is 
slightly better than the present one. This result could be due to the fact that run A3 
corresponds to a mud density and viscosity of 1380 Kg m-3 and 1.5 x m2s-l, 
i.e. to the situation of a very viscous fluid with a high density. It should be noted that 
the model of Sakakiyama & Bijker is restricted to the lower layer and assumes that 
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FIGURE 2. Drift velocity profile in the mud layer: 0, measured (Sakakiyama & Bijker); -.-, 
calculated (Sakakiyama & Bijker); -, calculated (Piedra-Cueva, present model). (a) Run A3, 
u, = 4.9 x ms-', at x = 5.0 m; (c) Run C2, 
u, = 1.1 x ms-', at x = 6.0 m. 

m d ,  at x = 3.5 m; (b)  Run B1, u, = 5.7 x 
ms-I, at x = 6.0 m; ( d )  Run D3, u, = 1.11 x 

the second-order time-average pressure gradient is zero, which may be more suited 
to the actual experimental conditions. 

It can be seen from figure 2, that the profiles of mass transport velocity mea- 
sured by these authors are more uniform than those obtained theoretically. The 
greatest differences appear near the rigid bed, where both the numerical solution of 
Sakakiyama & Bijker and the present analytical solution give smaller velocities than 
the experimental results. It is thought that this effect is due to the fact that the 
theoretical solutions are based on Newtonian fluids, while it is well known that mud 
behaves as non-Newtonian fluid, i.e. the mud viscosity changes as a function of the 
shear rate. In fact, the viscosity decreases for increasing shear rate. Thus, mud at 
deeper levels moves faster than predicted, since shear rate increases near the rigid 
bottom and viscosity decreases. 

Next, we present the profile of mass transport velocity in both the upper and 
lower layers as obtained with the present model, for various values of the lower-layer 
viscosity v,, which are shown in figure 3(a-d). Figures 3(a) and 3(c)  were obtained for 
the case of short waves - kohl = 1.37 - and figures 3(b) and 3(d)  for the case of long 
waves - kohl = 0.57 -, where k,  is the wavenumber given by the rigid bed theory. 

In all cases, the solid lines represent the velocity profile for high values of v, - the 
viscosity of the lower layer - , i.e. the rigid bed solution. Figures 3(a) and 3(b) were 
calculated with the unbounded domain condition and figures 3(c) and 3(d)  with the 
condition of zero flux. All the results presented here were obtained with a given set 
of fixed physical parameters, which are stated in each figure. 

In the case of the unbounded domain (figures 3a and 3b), the mass transport in 
the upper layer decreases for decreasing viscosities of the lower layer, and is always 
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FIGURE 3. Profile of horizontal mass transport velocity for a two-layer viscous system. The 
characteristics of the system are: hl = 0.30m, h2 = 0.09 m, p m  = 1230 Kg mP3; (a) and ( c )  
kohl = 1.37, ( b )  and (d )  kohl = 0.57; (a)  and ( b )  unbounded domain, ( c )  and (d)  zero flux: 
v,( m2 s-l) =-, lo3; -.-, lop4; 0,  --, H, = 0.032 m. 

smaller than that obtained for the case of a rigid bed. For the range of viscosities 
studied, changes of about 40% in the velocity occur. In the lower layer the velocity 
in general increases for decreasing viscosities, and thus the velocity jump through the 
interface boundary layers follows the change in viscosity. For vanishing viscosity and 
for pm + pw, the velocity jump should be zero, as in the case of a one-layer system 
with thickness hl + h2. The interface mass transport is always in the direction of wave 
propagation, from left to right in these figures. 

For the range of intermediate values of kohl considered, it is seen that in the upper 
layer the velocity near the free surface decreases for decreasing kohl, while near the 
interface the velocity increases, and so the resulting velocity profile is more uniform 
for the case of longer waves. The flow rate in the upper layer increases for increasing 
wave frequencies, while in the lower layer in general it decreases. We will come back 
to this point later on. 

Figures 3(c) and 3(d) show the resulting velocity profiles for the case of waves 
in a closed domain. In the interior of the upper fluid, the velocity has a parabolic 
distribution, with positive or negative values at the free surface, depending on the 
wave frequency and on the viscosity of the lower-layer. While for the shorter waves 
(kohl = 1.37) the free surface velocity is always positive and almost independent of 
the lower layer viscosity, for the longer waves this velocity can be positive, zero or 
negative depending on v,. For this case, the rigid bed solution predicts negative 
velocities at the free surface, but from figure 3(d) it is seen that it becomes positive 
for decreasing v,. In fact, for vm = m2 s-l the velocity profile in all the upper 
column is completely inverted with respect to the rigid bed solution. Also in this 
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case, the total horizontal flow due to the mass transport is zero, as was imposed. The 
interfacial velocity can take positive or negative values, depending on CT and v,. 

The profile of mass transport velocity in the lower fluid is similar to that in the 
upper fluid, but now the form of the velocity profile has slightly changed in relation 
to that presented by Dore (1970), which is thought to be due to the use of the 
Lagrangian formulation. In fact, as was stated by Dore (1970, p. 123), in the Eulerian 
formulation the stress and the second-order Eulerian mean velocity are discontinuous 
across z = 0. They are continuous across the actual position of the interface. But 
this is not the case in the Lagrangian formulation, since both stress and velocity are 
continuous across the interface in the reference configuration, which was taken as the 
undisturbed position z = 0. The velocity profiles in this lower layer are fairly sensitive 
to variations in v,. As is seen from figures 3(c) and 3(d), changes in the wavelength 
modify mainly the magnitude of the velocity, but not the form of the profile. 

It is interesting to note that while the formal solution of the mass transport 
velocity (equation (5.14)) is independent of the fluid viscosity as was obtained as 
well by Longuet-Higgins for the case of a homogeneous fluid, the solution is highly 
sensitive to the viscosity of the lower layer. This is due to the fact that viscosity effects 
are introduced in three differents way: through the first-order solution, through the 
wave damping coefficient kj and finally through the second-order boundary conditions 
by which the unknown constants of (5.14) are calculated. 

Next, the interfacial velocity is analysed in more detail. Figure 4(a-d) shows the 
interfacial velocity as a function of the wave frequency. Figures 4(a) and 4(b) are 
for various viscosity values (v,), and figures 4(c) and 4(d) are for various density 
values (p,). It is seen that for both 0 + co and 0 + 0 the interfacial velocity reduces 
to zero as should be expected, since the first case means deep water waves and the 
second means steady-state flow. For the larger viscosity value (v, = m2 s-'), 
the interfacial velocity has a bell shaped variation with 0, for both the bounded 
and unbounded cases (figures 4a and 4b). The maximum value is obtained in both 
cases for CJ = 3.5 rads-', and the velocity always remains positive. For the lower 
viscosities (v, between 5 x and m2 s-'), in the case of an unbounded 
domain, the interfacial velocity increases almost linearly with decreasing frequencies 
up to about CT = 1 rads-', and then decreases strongly towards zero for 0 0. The 
maximum velocity value now is about twice the velocity for v, = m2 s-l, i.e. 
the interfacial velocity increases for decreasing viscosities. For the case of bounded 
domains (figure 4b), it is seen that the variation of the interfacial velocity with the 
wave frequency is rather complex in the same range of vm. Interfacial velocities 
are negative and increase (in an absolute sense) for decreasing v,. Note the strong 
variation of the interfacial velocity that occurs for v, = 10-3-10-2 m2 s-l. 

Figures 4(c) and 4(d) show the variation of the interface mass transport for various 
values of the lower-fluid density. The velocity is not too sensitive to the variation of 
pm, but once again it changes considerably with wave frequency. It should be noted 
that the shape of the interfacial velocity of figure 4(d) (v, = lop3 m2 s-l) becomes 
very similar to the curve presented in figure 4(c) for v, = 4 x lop3 m2 s-l, showing 
the importance of this parameter. 

Figures 5(a) and 5(b) show the amplification factor Af  and the shift factor Sf 
(expressed in degrees), plotted as a function of the wave frequency and for different 
v, values. The amplification factor is defined as the ratio of the interfacial wave 
height to the surface wave height, and the shift factor as the relative phase angle 
between the interfacial wave motion and the surface wave motion. It is seen that Af 
decreases for increasing v,, with a bell shaped variation with the wave frequency. The 
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FIGURE 4. Interfacial mass transport velocity versus wave frequency for various viscosities and 
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FIGURE 5. ( a )  Amplification factor and ( b )  phase lag. hl = 0.30 m, h~ = 0.09 m; 
V , , , ( ~ ~ S - ~ ) = - . - , ~ X ~ O - ~ . -  9 ,  , ,  pm=1230Kg mp3. 

phase angle shows a change from nearly in-phase motion at intermediate frequency 
to out of phase for frequencies approaching zero. This phase change is sharper for 
the smaller viscosity values. This kind of response of the first-order solution could 
explain the strong variation of the interfacial mass transport velocity that occurs near 
(T = 1 rads-'. For intermediate frequencies, the mass transport seems to be more 
correlated with both the free surface and interface set-up than with the phase lag. 

Finally, figures 6(a) and 6(b)  show the flow rate plotted against the dimensionless 
wavenumber K = khl for various v m  values. These figures corresponds to the case 
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FIGURE 6. Flow rate in an unbounded domain: (a) Upper layer, (b) lower layer. hl = 0.30 m, 

hz = 0.09 m: -, rigid bed solution; v,( m2 s-l) = 0, -. -, lo-*, p m  = 1230 Kg me3. 

of waves in an unbounded domain. Figure 6(a) correspond to the flow in the upper 
layer and figure 6(b) to the lower layer. The flow rates in both upper and lower layers 
are obtained by using the stream function defined in (5.5): 

(6.26) 

The dimensionless flow rate Gw and Gm for the upper and lower layers are defined 
respectively as 

G w  = 44w/(H,2~), G m  = 4qrn/(H,2C). (6.27) 
In figure 6(a), the solid line represents the flow rate corresponding to the rigid bed 
solution, given in dimensional form by Unluata & Mei (1970) as 

qw = -~y,(d = hl) + ~ y w ( S  = O), q m  = - v m ( 6  = 0). 

(6.28) 1 'laH; [ + kh'sinh(2khl) + -sinh(2khl) 1 . 
4 =  4sinh2(khl) 4 2 4khl 

In the lower layer, the flow rate reduces to zero for large K values, as should be 
expected, since large K means deep water conditions and in this case the bottom 
is not affected by the surface wave. For small K values, the flow rate increases for 
deacreasing viscosities. 

In the upper layer, it can be seen that for large K values the flow rate approaches 
the rigid bed solution, since again this case corresponds to deep water conditions. For 
the range of intermediate K values, the solution approaches the rigid bed solution for 
the higher viscosity (v ,  = m2 s-l). For the lower viscosity, it can be seen that the 
sum of the flow rates in the upper and lower layers approaches the rigid bed solution, 
i.e. the one-layer solution (it should be noted that the rigid bed solution plotted in 
6a is valid for both hl and hl + h2). 



236 I .  Piedra-Cueva 

7. Conclusions 
A theoretical model is introduced to determine the mass transport velocity in a 

two-layer viscous system induced by the action of progressive waves and to study the 
influence of the properties of the lower layer on the resulting mass transport. The 
model solves the perturbed form of the mass conservation and momentum equations 
written in the Lagrangian coordinate system. The solution takes into account wave 
damping by viscous effects. Comparison with the experiments of Sakakiyama & 
Bijker (1989) in a water-mud system shows good agreement and an improvement 
over previous models. The profiles of mass transport velocity measured by these 
authors are more uniform than those obtained theoretically. The greatest differences 
appear near the rigid bed. It is thought that this effect is caused by the nonlinearity 
of the relationship between shear stress and shear rate characteristic of the mud. 

The profile of mass transport velocity in both upper and lower layers is obtained 
analytically for two differents physical situations. The first refers to waves propagating 
in bounded domains, and the second to waves propagating in unbounded domains, 
where both the net flux and the set-up can be non-zero. 

From this study, the following conclusions can be drawn. 
(i) The velocity profiles in both layers are dependent on the wave frequency and 

on the viscosity of the lower layer. The viscosity of the upper layer was kept constant 
and equal to the viscosity of water. The velocity at the free surface does not depend 
on the viscosity of the lower fluid for the larger frequencies (case of bounded domain), 
but is dependent for smaller ones. 

(ii) In the range of frequencies and viscosities studied, the mass transport velocity 
is smaller than that obtained with the rigid bed solution. 

(iii) The interfacial velocity is strongly dependent on both the wave frequency and 
the viscosity of the lower layer. As found by Dore (1970), the interfacial velocity can 
be positive (in the direction of wave propagation), but in contrast to Dore’s results, 
it can be negative as well, depending of the lower-layer viscosity. 

(iv) For low frequency values, the change of the interfacial velocity seems to be 
related to the change from almost in phase to out of phase for the free surface motion 
and the interfacial motion. But for intermediate frequencies it seems more related to 
the free surface and interface set-up. 

(v) In the upper layer, the velocity decreases for decreasing v,, while in the lower 
layer it increases. 

(vi) The velocity profile obtained with the condition of zero flux can be completely 
inverted with respect to the rigid bed solution and its magnitude can be greater at 
the interface than at the free surface. 

(vii) For viscosities lower than lop2 m2 s-l, the interfacial mass transport shows a 
complex dependence of both surface wave frequency and viscosity. 

(viii) In the bounded domain case, depending on the physical parameters, mass 
transport in the lower layer can be of the same order of magnitude as in the upper 
layer (figure 3d, ~ ,= iO-~- io -~  m2 s-l ). In the case of unbounded domains, as could 
occur in real fields, in general the mass transport is in the same direction as the 
propagation of the surface water wave, and is one order of magnitude higher than in 
the case of zero flux. 

(ix) The high sensitivity of the resulting drift velocity to the lower-layer viscosity 
should be noted. This suggests that careful studies of the mud rheology should be 
made before attempting to improve existing models of mass transport in a water-mud 
system. 
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Appendix A 

Li = SLL4 + mmSk2K2, L2 = ClmL4 - Ck2K2, L3 = m,(2 - R m‘). (A 1) 

(A2) 

Skz = sinh kh2, Ck2 = cosh kh2, S1, = sinh l,hz, Cl, = cosh l,h2. (A 3) 

(A 4) 

(A 5 )  

(A 6 )  

(A 7) 

2 L4 = -Rm’+ m, + 1, m’ = m i  + 1, Skl = sinhkhl, Ckl = coshkhl. 

KI = W4Skl - W3Ck1, K2 = 2R - (mi  + l), g’ = g/(iov,k). 

K3 = 2m,(R - l), Kq = - S l m / m m  + Sk2, Clk = -Clm + Ck2. 

P m 1  = Hjmh [COS ah2 + h2 cos ah2drn - edmb]. 
j m  nm 

Pwl = - cos ahlA,z + Dw2h1 sin ahl - F, y: Hjwhe-Awhl. 
jw nw 

P21 = P,lacosahl/(sin ahl) - sinahlAW2 + D,2(sinahl + ahl cosahl) 
sin ah2 + ah2 cos ah2 

h2 sin ah2 - 
jw  nw 

Hjw, Awe-Awh1 - a sin ah2A,t + Prnl 

P3 = ( f, - p’v’ f,) - p’v’[-a2Pw1 - Aw2a2 cos ah1 

+DW~(2acos ah1 - a2hl sin ahl) + 7, y: Hjwnwd~e-dwhl] 

-Am2a2 cos ah2 + Pm1(2a cos ah2 - a2h2 sin ah2)/(h2 sin ahz) 
jw nw 

+ Hjmnm Arn[a2h2 cos ah2 + 2a sin ah2 + ArneAmhz]. (A 9) 
i m  n m  

1 P22 = H .  [ s ( s i n a h l  + ahl cosahl) - iwnW 

jw nw 
2a 

-Am2a sin ah2 - BW2(cos ah1 - ah1 sin ahl) 

+ Hjmnmdm(- cos ah2 + ah2 sin ah2 + esmhz). (A 11) 
j m  nm 



P5 = 22 - A,2(1 - p')/h2a2(2 cos ah2 - 1 )  + 7; J - p j m n m A ,  
j, nm 

x [2a2 cos ah2 + 2/h2a( 1 - p')(sin ah2 + h2a cos ahz)] + Hi,",,, AieAmh2 

-(1 - p')/h2[Hj, , ,n, , ,d~(l  - edmh2)a2H. I m a m  edmh2] + a2Hjmnmd,edmh2}, (A 13) 

where 
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